A role for Pax6 in the normal development of dorsal thalamus and its cortical connections.
نویسندگان
چکیده
The transcription factor Pax6 is widely expressed throughout the developing nervous system, including most alar regions of the newly formed murine diencephalon. Later in embryogenesis its diencephalic expression becomes more restricted. It persists in the developing anterior thalamus (conventionally termed "ventral" thalamus) and pretectum but is downregulated in the body of the posterior (dorsal) thalamus. At the time of this downregulation, the dorsal thalamus forms its major axonal efferent pathway via the ventral telencephalon to the cerebral cortex. This pathway is absent in mice lacking functional Pax6 (small eye homozygotes: Sey/Sey). We tested whether the mechanism underlying this defect includes abnormalities of the dorsal thalamus itself. We exploited a new transgenic mouse ubiquitously expressing green fluorescent protein tagged with tau, in which axonal tracts are clearly visible, and co-cultured dorsal thalamic explants from Pax6(+/+ )or Pax6(Sey/Sey )embryos carrying the transgene with wild-type tissues from other regions of the forebrain. Whereas Pax6(+/+ )thalamic explants produced strong innervation of wild-type ventral telencephalic explants in a pattern that mimicked the thalamocortical tract in vivo, Pax6(Sey)(/Sey) explants did not, indicating a defect in the ability of mutant dorsal thalamic cells to respond to signals normally present in ventral telencephalon. Pax6(Sey)(/Sey) embryos also showed early alterations in the expression of regulatory genes in the region destined to become dorsal thalamus. Whereas in normal mice Nkx2.2 and Lim1/Lhx1 are expressed ventral to this region, in the mutants their expression domains are throughout it, suggesting that a primary action of Pax6 is to generate correct dorsoventral patterning in the diencephalon. Our results suggest that normal thalamocortical development requires the actions of Pax6 within the dorsal thalamus itself.
منابع مشابه
Cortical and thalamic axon pathfinding defects in Tbr1, Gbx2, and Pax6 mutant mice: evidence that cortical and thalamic axons interact and guide each other.
During development, cortical areas establish precise reciprocal projections with corresponding thalamic nuclei. Pioneer axons from the cortex and thalamus first meet in the intermediate zone of the subcortical telencephalon (subpallium). Their close interactions in the subpallium suggest that they may use each other for guidance. To test this hypothesis, the development of corticothalamic and t...
متن کاملDisruption of early events in thalamocortical tract formation in mice lacking the transcription factors Pax6 or Foxg1.
Early events in the formation of the thalamocortical tract remain poorly understood. Recent work has suggested that thalamocortical axons follow a path pioneered by transient thalamic afferents originating from the medial part of the ventral telencephalon. We studied the development of these transient afferents and the thalamocortical tract in mutant mice lacking transcription factors normally ...
متن کاملPax6 is required for the normal development of the forebrain axonal connections.
The transcription factor PAX6 has been implicated in forebrain patterning, cerebral cortical arealization and in development of thalamocortical connections. Using a Pax6/lacZ knockout mouse, in which the endogenous Pax6 expression is reflected by beta-galactosidase activity, we have studied the consequences of the loss of Pax6 function on thalamocortical (TCA) and corticofugal axon (CFA) pathfi...
متن کاملA New Division of the Human Claustrum Basis on the Anatomical Landmarks and Morphological Findings
Purpose: The subdivision of claustrum into parts in some species exists in literature. Those are mainly based on a pattern of its connections with various cortical areas, method of staining, immunoreactivity of its neurons etc. The aim of this study was the division of the human claustrum into different parts, for first time, based on morphology, density, arrangement of claustral neurons as wel...
متن کاملGenetic control of dorsal-ventral identity in the telencephalon: opposing roles for Pax6 and Gsh2.
We have examined the genetic mechanisms that regulate dorsal-ventral identity in the embryonic mouse telencephalon and, in particular, the specification of progenitors in the cerebral cortex and striatum. The respective roles of Pax6 and Gsh2 in cortical and striatal development were studied in single and double loss-of-function mouse mutants. Gsh2 gene function was found to be essential to mai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 127 23 شماره
صفحات -
تاریخ انتشار 2000